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Abstract

Recommender system has become an indispensable
component in many e-commerce sites. One ma-
jor challenge that largely remains open is the cold-
start problem, which can be viewed as an ice bar-
rier that keeps the cold-start users/items from the
warm ones. In this paper, we propose a novel rat-
ing comparison strategy (RAPARE) to break this
ice barrier. The center-piece of our RAPARE is to
provide a fine-grained calibration on the latent pro-
files of cold-start users/items by exploring the dif-
ferences between cold-start and warm users/items.
We instantiate our RAPARE strategy on the preva-
lent method in recommender system, i.e., the ma-
trix factorization based collaborative filtering. Ex-
perimental evaluations on two real data sets vali-
date the superiority of our approach over the exist-
ing methods in cold-start scenarios.

1 Introduction
Since the concept of recommender systems emerged in 1990s
[Resnick and Varian, 1997], both industry and academia have
witnessed the rapid advancement in this field. For exam-
ple, during the last decade, many mainstream e-commerce
companies have reported significant profit growth by integrat-
ing recommender systems [Davidson et al., 2010; Das et al.,
2007; Linden et al., 2003; Sarwar et al., 2000].

Despite the success of existing recommender systems, the
cold-start problem [Merve Acilar and Arslan, 2009; Schafer
et al., 2007], i.e., how to make proper recommendations for
cold-start users or cold-start items, largely remains a daunting
dilemma. On one hand, cold-start users (e.g., who have rated
less than 10 items) and cold-start items (e.g., which have re-
ceived less than 10 ratings) occupy a large proportion in many
real applications such as Netflix [Töscher et al., 2009]. On
the other hand, the effectiveness of the existing recommenda-
tion approaches (e.g., collaborative filtering) largely depends
on the sufficient amount of historical ratings, and hence the
effectiveness for cold-start users/items with very few ratings
could degrade dramatically.

To date, many efforts have been made to mitigate the cold-
start problem, and these efforts can be divided into three

classes. In the first class, an initial interview process is intro-
duced for cold-start users [Rashid et al., 2002]. During this
interview process, a set of items are provided for the cold-
start users to express their opinions. The main disadvantage
of methods in this class is the additional burdens incurred by
the interview process. Methods in the second class resort to
side information such as the user/item attributes [Zhang et
al., 2014] and social relationships [Lin et al., 2013]. How-
ever, these methods become infeasible in many real recom-
mender systems where such side information may not be
available. In the third class, the cold-start problem is tack-
led in a dynamic way. The intuition is that, compared to
warm users/items, ratings for cold-start users/items may be
more valuable to improve their prediction accuracy; conse-
quently, methods in this class aim to provide fast recommen-
dations for cold-start users/items, and then dynamically ad-
just their latent profiles as they give/receive new ratings. Ex-
amples in this class include the incremental singular value
decomposition (iSVD) method [Sarwar et al., 2002] and the
incremental matrix factorization method [Takács et al., 2008;
Rendle and Schmidt-Thieme, 2008].

Compared with the first two classes of methods, the dy-
namic view of the cold-start problem does not incur addi-
tional interview burden or rely on appropriate side informa-
tion, and thus becomes the focus of this paper.

In particular, we make the following analogy, i.e., to view
the cold-start problem as an ice barrier between the cold-start
users/items and the warm ones, and such an ice barrier could
be broken with the help of warm users/items. To this end, we
propose an ice-breaker via a novel rating comparison strategy
(RAPARE) which can calibrate the latent profiles for cold-
start users/items. Take cold-start user as an example. When
a cold-start user gives a rating on an item, we first compare
this rating with the existing ratings (which are from warm
users) on this item, and then adjust the profile of the cold-
start user based on the outcomes of the comparisons. Our
rating comparison strategy (RAPARE) is inspired by the Elo
Rating System [Elo, 1978] which has been widely used to
calculate players’ ratings in many different types of match
systems, such as chess tournaments, FIFA, ATP, MLB and
even some online competition sites (e.g., TopCoder).

The main contributions of this paper are summarized as
follows:

• We propose a novel rating comparison strategy RAPARE



to serve as an ice-breaker for the cold-start problem. The
key idea of RAPARE is to exploit the knowledge from
warm users/items to help calibrate the latent profiles of
cold-start users/items.

• We instantiate the proposed RAPARE strategy on ma-
trix factorization based collaborative filtering (RAPARE-
MF), together with an effective and efficient solver.

• We conduct extensive experimental evaluations on two
real data sets, showing that our approach (1) outper-
forms several benchmark collaborative filtering methods
and online updating methods in terms of prediction ac-
curacy; (2) earns better quality-speed balance while en-
joying a linear scalability.

The rest of the paper is organized as follows. In Section
2, we provide the problem statement. In Section 3, we de-
scribe the proposed rating comparison strategy and the pro-
posed model. In Section 4, we present the experimental re-
sults. In Section 5, we review related work. Finally, we con-
clude the paper in Section 6.

2 Problem Statement
In this section, we present the problem statement of cold-start
recommendation. Suppose we have sets of users U , items I
and observed ratings R. Let u, v represent the users, and
i, j represent the items, respectively. Then, rui ∈ R is the
rating of user u for item i accordingly. For the scenario of
cold-start user problem, we call the users who have given less
than a certain amount of ratings (e.g., 10 ratings) as cold-start
users and the rest as warm users. Meanwhile, Rc and Rw

denote the sets of ratings that belong to cold-start users and
warm users, respectively. We use Rw(i) to represent the set
of ratings on item i from warm users. Based on the notations,
we have the following problem definition for recommending
items to cold-start users. Similar notations and definition can
be derived for the cold-start item problem, and thus are omit-
ted for brevity.
Problem 1 The Cold-Start User Problem
Given: (1) the existing ratings Rw from warm users, (2) a

new rating ruj from a cold-start user u to item j, and
(3) an item i (i 6= j);

Find: the estimated rating r̂ui from user u to item i.
As we can see from the definition, the input of our prob-

lem includes the existing ratings from warm users, as well as
the new ratings from cold-start users. No side information is
needed. When a new rating from a cold-start user arrives, we
aim to immediately update the estimated rating r̂ui for any
given item i. The estimated rating indicates to what extent
the cold-start user u would prefer to an item i.
Preliminary #1. To date, matrix factorization has been one of
the most dominate methods in recommender systems. Matrix
factorization (MF) [Koren et al., 2009] assumes that users’
opinions to items are based on the latent profiles for both
users and items. With this assumption, MF projects both
users and items into a common latent factor space to predict
the rating (e.g., r̂ui) by the following equation

r̂ui = pTu · qi (1)

where vector pu and qi are latent profiles for user u and item
i, respectively. To learn these latent profiles, the square loss
is usually used as the loss function

min
q∗,p∗

∑
rui∈R

(rui − pTu · qi)2 + λ(||qi||2 + ||pu||2) (2)

where L2 regularization is to avoid over-fitting.
In Eq. (2), the learned latent profiles may be less accu-

rate for cold-start users/items due to the lack of sufficient rat-
ings. To this end, we pay special attention to the cold-start
users/items, and aim to calibrate the latent profiles for cold-
start users/items with the help of the warm users/items. We
will describe how to calibrate the latent profiles for cold-start
users/items in the following section.
Preliminary #2. Elo Rating System, which is first adopted
in chess, can be used to measure the relative skill levels be-
tween players in a certain competition. The basic idea be-
hind Elo is that a player’s rating (skill level) is determined by
the competition outcomes against her opponents and the rat-
ings of these opponents. For example, a player’s rating will
be greatly changed if she wins an opponent whose rating is
much higher or if she loses to an opponent who has a much
lower rating. In other words, the system implicitly aims to
minimize the difference between the expected and the actual
outcome of competitions.

3 The Proposed Approach
In this section, we present our rating comparison strategy
(i.e., RAPARE) and the instantiation of RAPARE on ma-
trix factorization based collaborative filtering (i.e., RAPARE-
MF). For brevity, we use the cold-start users as the subject
throughout this section. It is straightforward to apply the pro-
posed method for the cold-start items.

3.1 The RaPare Strategy
We aim to break the ice barrier between cold-start users and
warm users with the help of warm users, so that we could
better build the latent profiles of cold-start users. Specially,
we achieve this goal by borrowing the idea of rating compar-
ison from Elo Rating System. That is, we use the difference
between the expected result and actual result from the rating
comparison strategy to update the latent profiles of cold-start
users. For example, suppose u is a cold-start user who has
just rated item i, and v is an existing warm user who rated
item i in the past. The expected result of this competition can
be calculated as the difference between r̂ui and rvi. Here, r̂ui
is estimated based on the latent profiles of user u (which is
also the parameters that we aim to estimate). In the mean-
while, with the actual rating rui, we can have the actual re-
sult of the competition, which is the difference between rui
and rvi. Based on the expected result and actual result of the
competition, we may update the latent profiles of user u by
following a similar strategy as in Elo Rating System. That is,
the farther the expected result of competition deviates from
its actual result, the larger the latent profiles of user u will be
changed.

The basic idea of our RAPARE strategy is to tune the rat-
ings (i.e., the latent profiles) according to the difference be-



tween the expected result and actual result of a rating com-
parison. From the perspective of optimization, the RAPARE
strategy is equivalent to minimize the difference between the
expected result and actual result by learning/tuning the the la-
tent profiles of cold-start users. Therefore, we can minimize
the following equation∑

rui∈Rc

∑
rvi∈Ri

w

(g(rui, rvi)︸ ︷︷ ︸
actual diff

− g(r̂ui, rvi)︸ ︷︷ ︸
expected diff

)2 (3)

where g is the loss/difference function for a rating compari-
son, and the square loss is used as the loss function, calculat-
ing the difference between expected result and actual result of
a rating comparison. As we can see from the above formula-
tion, for a given cold-start user, we can employ the potentially
large amount of existing ratings from warm users to help cal-
ibrate the latent profiles of this cold-start user.

In this paper, we put our focus on the g function. We pro-
vide several candidates, including the linear difference, the
logistic difference, and the elo difference. For the first two
candidates, the are defined as follows

glinear(rui, rvi) = rui − rvi (4)

glogistic(rui, rvi) =
1

1 + e−(rui−rvi)
(5)

We use g(rui, rvi) as an example in the above equations, and
equations for g(r̂ui, rvi) can be similarly obtained by sub-
stituting rui with r̂ui. For the elo candidate, two difference
functions are used to compute g(rui, rvi) and g(r̂ui, rvi),
which are directly from Elo Rating System

geloactual
(rui, rvi)

{ 1, if rui > rvi
0.5, if rui = rvi,
0, otherwise

and (6)

geloexpected
(r̂ui, rvi) =

1

1 + e−(rui−rvi)
(7)

where geloactual
is used for calculating the actual result of the

competition, and geloexpected
is used for the expected result.

Notice that geloexpected
is actually the same with glogistic.

3.2 The RAPARE-MF Model
Next, we instantiate RAPARE with the matrix factorization
method. Formally, we have the following optimization prob-
lem for RAPARE-MF

arg min
Pc

Opt(Rw,Rc,Pc,Q) (8)

with

Opt(Rw,Rc,Pc,Q) =∑
rui∈Rc

∑
rvi∈Ri

w

(g(rui, rvi)︸ ︷︷ ︸
actual diff

− g(r̂ui, rvi)︸ ︷︷ ︸
expected diff

)2 + λ||Pc||2F (9)

where Rw is the set of ratings from warm users, Ri
w is the

set of ratings from warm users to item i, Rc is the set of rat-
ings from cold-start users, Pc is the matrix of latent profiles
for cold-start users, and Q is the matrix of latent profiles for
items. To avoid the over-fitting problem, we also add a regu-
larization term which is controlled by λ in the formulation.

As we can see from Eq. (8), given the input of the existing
ratings from warm users, the arrival ratings from cold-start
users, the initial latent profiles of cold-start users, and the la-
tent profiles of items (learnt by MF method beforehand), the
RAPARE-MF model aims to minimize the loss function de-
fined in Eq. (9) by adjusting the Pc. The reason we focus on
calibrating Pc while fixing Q is based on the observation that
a few number of arrival ratings from cold-start users would
not change the latent profiles of the corresponding items dra-
matically, but could have a much bigger impact on the latent
profiles of cold-start users. Once the Pc is solved, we can
estimate the rating from a cold-start user by Eq. (1).

Connections to existing methods. Notice that the RAPARE-
MF model with linear difference function is closely con-
nected to the traditional MF model. The expanded form of
RAPARE-MF model with linear difference can be written as
L =

∑
rui∈Rc

∑
rvi∈Ri

w

((rui − rvi)− (r̂ui − rvi))2 + λ||Pc||2F

=
∑

rui∈Rc

|Ri
w|(rui − r̂ui)2 + λ||Pc||2F

(10)
As we can see, similar to the traditional MF method [Rendle
and Schmidt-Thieme, 2008], the above formulation also aims
to optimize over the square loss between the actual rating and
the predicted rating. In other words, our RAPARE-MF with
linear difference function can be viewed as a weighted matrix
factorization method for cold-start users.

3.3 Fast Model Inference Algorithm
Here, we propose a fast learning algorithm to solve the opti-
mization problem in Eq. (8), which is based on the following
two key observations of the inherent structure in the optimiza-
tion formulation. First, there are usually a small set of pos-
sible ratings (e.g., 1–5 stars) for most recommender systems.
Second, in Eq. (8), the contribution of the ratings from differ-
ent warm users to item i is equal to each other if they share the
same rating on item i. Specially, the optimization equation in
Eq. (8) could be re-written as

L =
∑

rui∈Rc

rmax∑
r=1

|ΩRi
w,r|(g(rui, r)− g(r̂ui, r))

2 + λ||Pc||2F

(11)
where rmax is the maximal rating scale (e.g., rmax = 5 in
Netflix), and |ΩRi

w,r| indicates the number of ratings in Ri
w

with a value r.
For a given rating rui (from the cold-start user u to item

i), we can now aggregate over the existing ratings (from the
warm users to item i) with the same value, to form the basic
update unit. Specially, we have the following general updat-
ing rule for Eq. (11)

pu,f ← pu,f − α∇∗pu,f
(12)

where the basic update unit ∇∗pu,f
for the linear and the lo-

gistic differences is

∇∗pu,f
=

∂

∂pu,f
L = 2 · |ΩRi

w,r| · (g(rui, r)−

g(r̂ui, r)) ·
∂

∂pu,f
g(r̂ui, r) + 2λpu,f

(13)



Algorithm 1: Fast learning RAPARE-MF
Input: ratings from warm usersRw, ratings from

cold-start usersRc, item latent factors Q, and the
maximal rating scale rmax

Output: cold-start user latent factors Pc

1 initialize Pc

2 repeat
3 for rui ∈ Rc do
4 for r ← 1, ..., rmax do
5 for f ← 1, ..., k do
6 update pu,f ← pu,f − α∇∗pu,f

as defined
in Eq. (12)

7 until convergence;
8 return Pc

where
∂

∂pu,f
glinear = qi,f (14)

for the linear difference function, and

∂

∂pu,f
glogistic =

e−(r̂ui−rvi)

(1 + e−(r̂ui−rvi))2
· qi,f (15)

for the logistic difference function.
For the elo difference, we directly use the difference be-

tween expected result and actual result as the basic update
unit. The equation is as follows.

∇∗pu,f
= |ΩRi

w,r|(geloactual
− geloexpected

) · qi,f (16)

We use mini-batch gradient descent method to learn the
parameters, and the algorithm is summarized in Algorithm 1.
As we can see from the algorithm, we first initialize the Pc

matrix. There are several initialization methods such as ran-
dom initialization or cluster-based initialization. In this work,
we adopt a heuristic averaging method. That is, for each cold-
start user u, we first find the set of warm users who have given
the same rating to item i as u does, and computes the average
pi over latent profiles from these warm users. Then, we can
have the initial pu for user u by further averaging pi over all
rated items by user u. After initialization, the algorithm starts
the iteration.

The time complexity of each iteration (Steps 3-6) in Algo-
rithm 1 is O(|Rc| · rmax · k). Notice that if we use a straight-
forward gradient descent method, its average-case time com-
plexity is O(|Rc| · |Ri

w| · k)). Thus, Algorithm 1 is much
faster, since rmax � |Ri

w| where |Ri
w| is the average num-

ber of ratings from warm users to each item.

4 Experiments
In this section, we present the experimental evaluations. All
the experiments are designed to answer the following ques-
tions:

• Effectiveness: How accurate is the proposed approach
for the cold-start problem?

• Efficiency: How fast is the proposed approach for updat-
ing the latent profiles of cold-start users/items?

Table 1: The statistics of the two data sets.
Data Users Items Ratings Rating Scale

MovieLens 6,040 3,706 1,000,209 [1,2,3,4,5]
EachMovie 72,916 1,628 2,464,792 [1,2,3,4,5]

4.1 Experimental Setup
Data Sets and Evaluation Metrics
We use two real, benchmark data sets: MovieLens1 and Each-
Movie. The MovieLens data contains 1M ratings that are col-
lected and published from the MovieLens website2. Each
user in this data set rated at least 20 movies. EachMovie is
organized by HP/Compaq Research. The statistics of the two
data sets are summarized in Table 1.

As for evaluation metrics, we adopt the commonly used
root mean square error (RMSE) for effectiveness comparison

RMSE =

√∑
rui∈E (r̂ui − rui)2

|E|
(17)

where test set E contains the ratings for evaluation, r̂ui is the
predicted rating from user u to item i, rui is the ground truth,
and |E| represents the number of ratings in E . For efficiency,
we report the wall-clock time of the compared methods for
updating the latent profiles of cold-start users/items.

Evaluation Protocol
Here, we describe how we evaluate the performance of our
method for recommending items to cold-start users. Sim-
ilar evaluation protocol can be applied to the cold-start
items. Notice that our evaluation protocol follows the existing
work [Rendle and Schmidt-Thieme, 2008].

We summarize the overall evaluation protocol for the cold-
start users with the following descriptions.

1. Setup the cold-start user scenario

• Randomly choose 25% users (as cold-start users),
put them into set Uc, and put all their ratings into
the set Ec. The rest users are considered as warm
users.

• Train the model for warm users via the MF method
[Koren et al., 2009]. After this step, we can ob-
tain the latent profiles of warm users and the latent
profiles for all items

2. Evaluate the cold-start user scenario

• Create an empty setRc

• for n = 1, ..., 10 do:
– for each cold-start user u ∈ Uc do:

* randomly pick up3 one of his ratings from the
Ec and move it toRc

1http://www.grouplens.org/datasets/movielens/
2http://movielens.org
3The timestamps provided by these two datasets are the time that

users rated the movies on their websites for data collection. Thus, all
these timestamps cannot reflect the time sequences that user watch
these movies. In other words, such timestamps do not capture the
cold-start scenario.
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(a) Cold−start user scenario on MovieLens (b) Cold−start item scenario on MovieLens (c) Cold−start user scenario on EachMovie (d) Cold−start item scenario on EachMovie

Figure 1: The effectiveness comparisons for cold-start scenarios on the EachMovie data and the MovieLens data. In general,
RAPARE-MF outperforms all the compared methods for both cold-start users and cold-start items on both data sets.

* learn the latent profile of user u by the proposed
method RAPARE-MF

* calculate the error between the predicted result
and the actual result for the rest of u’s ratings in
the Ec

– calculate the error over all cold-start users

Compared Methods
In our evaluation protocol, the ratings inRc are treated as the
early ratings for the cold-start users/items in a dynamic man-
ner. These ratings can also be regarded as the historical infor-
mation for existing methods in a static manner. For example,
MF method may take the ratings from warm users and cold-
start users together as input. Here, we compare our RAPARE-
MF model with several classic collaborative filtering methods
for both effectiveness and efficiency. The compared methods
include: user/item based neighborhood methods (i.e., user
KNN and item KNN) [Sarwar et al., 2001], incremental SVD
(iSVD) [Sarwar et al., 2002], matrix factorization (MF) [Ko-
ren et al., 2009], and Online Update which is proposed for
updating the latent profiles of cold-start users/items [Rendle
and Schmidt-Thieme, 2008].

4.2 Effectiveness Results
We first evaluate the effectiveness of the proposed method
with the compared methods under the cold-start scenario. The
results for both cold-start users and cold-start items on both
data sets are shown in Fig. 1. The x-axis of Fig. 1 indicates
the cold-start degree (i.e., the number of ratings given by
each cold-start user/item), and the y-axis indicates the RMSE
value. Smaller RMSE is better. Due to the limited page
length, we do not provide the comparison of effectiveness
on the three proposed difference functions in section 3.1. In
this paper, we only choose logistic to evaluate the effective-
ness, since it performs better than other two difference func-
tions. On the EachMovie data, the performance of user KNN
and item KNN are significantly worse than the other meth-
ods. Therefore, we exclude these two KNN methods in the
comparison on the EachMovie data.

There are several observations from the results on the
MovieLens data (Fig. 1(a) and Fig. 1(b)). First of all, in

general, RAPARE-MF performs better than all the compared
methods for both cold-start users and cold-start items. The
item KNN and user KNN perform relatively poorly, espe-
cially at the beginning of the evaluation. The reason is that
the preferences of the cold-start users/items are not accurately
captured. The iSVD method performs very well at the be-
ginning of the evaluation. This is because iSVD fills in all
the missing values in the rating matrix with the mean rating
values of the corresponding items. However, as the evalua-
tion continues, no significant improvement is observed in the
iSVD method. The MF method and Online Update method
perform relatively well in the compared methods. The RMSE
of these two methods decreases as the evaluation continues.
However, RAPARE-MF still outperforms these two methods
in all cases. This is due to the special calibration on the latent
profiles of cold-start users/items. In other words, our pro-
posed method indeed helps to lower the prediction error. No-
tice that, small improvements in RMSE could gain practically
significant improvement in recommendation [Koren, 2008].

Similar results are observed on the EachMovie data
(Fig. 1(c) and Fig. 1(d)). Meanwhile, we perform statistical
t-test, which indicates that the improvement of RAPARE-MF
is significant. For example, when the cold-start degree is 5,
the p-value is less than 0.05 in all four settings (i.e., two cold-
start scenarios on two data sets), against the corresponding
best competitors. Overall, these results show the effective-
ness of the proposed method for the cold-start problem.

4.3 Efficiency Results
Next, we present the efficiency results of the compared meth-
ods. We still report the results on the MovieLens data, while
similar results are observed on the EachMovie data. All the
experiments are run on a Macbook Pro. The machine has four
2.2GHz Intel i7 Cores and 8GB memory.

For efficiency, we first evaluate the quality-speed balance
of different methods in both cold-start user and cold-start item
scenarios. The results are shown in Fig. 2. In the figures, we
plot the RMSE on the y-axis and the wall-clock time (in log
scale) on the x-axis. An ideal method would locate at the left-
bottom corner. As we can see from Fig. 2(a) and Fig. 2(b), our
RAPARE-MF shows good balance between quality and speed
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Figure 2: The quality-speed balance of different methods on
the MovieLens data. Wall-clock times are plotted in log scale.
The proposed RAPARE-MF achieves a good balance between
the prediction quality and the efficiency (in the left-bottom
corner).
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(a) Time cost vs. number of
ratings from warm users in
cold-start user scenario
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(b) Time cost vs. number of
ratings from warm users in
cold-start item scenario
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(c) Time cost vs. number of
ratings from cold-start users
in cold-start user scenario
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Figure 3: Scalability of RAPARE-MF. RAPARE-MF scales
linearly wrt the data size.

in both cold-start user and cold-start item scenarios. In terms
of the speed comparisons, our RAPARE-MF is 40% faster on
average than the best competitor (i.e., Online Update).

Finally, we study the scalability of the proposed RAPARE-
MF in Fig. 3. In the figures, we show the scalability of our
method in terms of both the number of ratings from warm
users/items (Fig. 3(a) and Fig. 3(b)) and the number of ratings
from cold-start users/items (Fig. 3(c) and Fig. 3(d)). As we
can see from the figures, our proposed RAPARE-MF scales
linearly in all four cases.

5 Related work
In this section, we review the related work including the clas-
sic collaborative filtering methods and the existing recom-
mendation approaches for the cold-start problem.

Classic Collaborative Filtering. Collaborative filtering
(CF) has become an indispensable building block in many
recommender systems. Two prevalent CF methods are the
neighborhood method and the matrix factorization method.
The basic idea of neighborhood method is to calculate the
similarities between users/items, and make recommendations
based on the most similar users/items. As for the matrix fac-
torization method, it aims to learn the latent factors with the
assumption that the ratings are based on the interactions be-
tween user latent factors and item latent factors [Koren et al.,
2009; Shapira, 2011].

Recommendations for Cold-Start Scenarios. Existing ef-
forts for the cold-start problem can be divided into three
classes. In the first class, an additional step of rating col-
lection is required. For example, an interview process where
a set of items are usually presented for the cold-start users to
provide their ratings [Zhou et al., 2011; Golbandi et al., 2011;
Harpale and Yang, 2008; Sun et al., 2013]. The main focus in
different interview processes lies in the selection of a proper
item set. However, Rashid et al. [Rashid et al., 2002] point
out that such interview process should be deliberately con-
trolled to avoid user loss.

Methods in the second class resort to side information such
as the user/item attributes [Zhang et al., 2014] and social re-
lationships [Lin et al., 2013; Yao et al., 2014] to tackle the
cold-start problem. However, these methods become infeasi-
ble in many real recommender systems where such side in-
formation may not be available.

In the third class, no additional rating collection or side
information is required. Instead, the cold-start problem is
considered and tackled in a dynamic manner. Methods in
this class emphasize on the importance of new ratings from
cold-start users, and aim to adjust the recommendation for
these users as their new ratings arrive. For example, Sar-
war et al. [Sarwar et al., 2002] introduce an incremen-
tal SVD (iSVD) algorithm for the cold-start users; Tackcs
et al. [Takács et al., 2008] and Rendle et al. [Rendle and
Schmidt-Thieme, 2008] also provide incremental algorithms
to update the latent factor vectors for cold-start users when
they give new ratings. Our method falls into this class, and
we propose a rating comparison model to give special treat-
ments to the cold-start users/items.

6 Conclusions

In this paper, we have proposed a rating comparison strategy
(RAPARE) to make proper recommendations for cold-start
users/items. In particular, the RAPARE strategy provides a
special, fine-grained treatment for cold-start users and cold-
start items. Instantiating RAPARE with the matrix factoriza-
tion method, we further propose the RAPARE-MF model as
well as an effective and efficient algorithm to solve it. Ex-
perimental evaluations on two real data sets show that our ap-
proach outperforms several benchmark collaborative filtering
and online updating methods in terms of prediction accuracy,
and it provides fast recommendations with linear scalability.
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Robert M Bell. The bigchaos solution to the netflix grand
prize. Netflix prize documentation, 2009.

[Yao et al., 2014] Yuan Yao, Hanghang Tong, Guo Yan,
Feng Xu, Xiang Zhang, Boleslaw Szymanski, and Jian
Lu. Dual-regularized one-class collaborative filtering. In
CIKM, 2014.

[Zhang et al., 2014] Mi Zhang, Jie Tang, Xuchen Zhang, and
Xiangyang Xue. Addressing cold start in recommender
systems: A semi-supervised co-training algorithm. In SI-
GIR, 2014.

[Zhou et al., 2011] Ke Zhou, Shuang-Hong Yang, and
Hongyuan Zha. Functional matrix factorizations for cold-
start recommendation. In SIGIR, pages 315–324. ACM,
2011.


